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Abstract We present a novel optimization algorithm for computing the ranges of mul-
tivariate polynomials using the Bernstein polynomial approach. The proposed algorithm
incorporates four accelerating devices, namely the cut-off test, the simplified vertex test, the
monotonicity test, and the concavity test, and also possess many new features, such as, the
generalized matrix method for Bernstein coefficient computation, a new subdivision direc-
tion selection rule and a new subdivision point selection rule. The features and capabilities of
the proposed algorithm are compared with those of other optimization techniques: interval
global optimization, the filled function method, a global optimization method for imprecise
problems, and a hybrid approach combining simulated annealing, tabu search and a descent
method. The superiority of the proposed method over the latter methods is illustrated by
numerical experiments and qualitative comparisons.

Keywords Bernstein polynomials · Global optimization · Interval analysis · Polynomial
optimization · Range computation

1 Introduction

Polynomial optimization problems arise in the mathematical modelling of several real world
applications. Knowledge of the range of a polynomial in several variables on a multidimen-
sional rectangle is relevant for numerous investigations and applications in numerical and
functional analysis, combinatorial optimization, and finite geometry.

To find the globally optimal solutions of polynomial programs, several existing meth-
ods use linearization techniques to approximate polynomial terms [19]. Since linearizations
are only approximations, accuracy (i.e., sharpness) is less important than efficiency [13].
A few algorithms for global optimizations of multivariate polynomial functions use some
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relaxation techniques (such as linear matrix inequalities), which are further modifications
of the linearization techniques. These techniques involve sum of squares and semidefinite
programming [15,17]. The accuracy of the solutions depends heavily on the relaxation order.
When the relaxation order increases, the number of relaxed variables increases, hence the
overall computational time increases very quickly.

In contrast, interval arithmetic based optimization algorithms [14,18] are based on branch
and bound methods. They always obtain guaranteed bounds, but tend to be slow [13,34].
Exact algebraic techniques for solving polynomial programming problems find all the crit-
ical points, and then identify the smallest value of the polynomial at any critical point.
Such techniques include Gröbner bases, eigenvalue method, resultants and discriminants
and numerical homotopy methods [3,24], but these may be computationally expensive and
the number of critical points could be infinite.

Another method for computing the range of a polynomial is obtained through the use of
Bernstein forms; these are intimately connected to Bernstein polynomials [20]. Range anal-
ysis using the Bernstein form does not require function evaluations. The method relies on the
simple idea that if a polynomial is written in the Bernstein basis [20] over a box, the range of
the multivariate polynomial is bounded by the values of the minimum and maximum Bern-
stein coefficients [1,4,5]. The key feature of the Bernstein approach to range computations
is that bounds on the global optima are guaranteed. The approach does not require any initial
guess for starting the optimization, but only an initial search box bounding the domain of
interest.

Polynomial optimization using the Bernstein approach needs transformation of the given
multivariate polynomial from its power form into its Bernstein form, and subsequently com-
putation of the Bernstein coefficients. The range enclosure obtained using the Bernstein
coefficients can be sharpened by subdividing the domain box at an appropriate point along a
suitable direction. Irrelevant boxes where the global optimizers do not lie, can be efficiently
discarded using the so-called acceleration devices, thus further avoiding unnecessary subdi-
visions. Thus, if efficient methods for Bernstein coefficient computation, efficient rules for
subdivision, and powerful acceleration devices become available, then these could be used
for the development of a new algorithm for range computation that incorporates all these
tools.

Garloff et al. proposed affine and convex relaxations in a branch and bound framework.
They construct affine lower bound functions for multivariate polynomials based on Bern-
stein expansion [8,9,29]. These lower bound functions make the relaxed problem a linear
programming problem. An advantage is that the bound functions can be constructed with a
guarantee even in the presence of rounding errors.

Motivated by the above works using the Bernstein form, we first propose certain devices,
namely the cut-off test, the simplified vertex test, the monotonicity test, and the concavity test
to delete certain boxes where the global optimizers surely cannot lie. Although, the ideas
of cut-off test, monotonicity test and concavity test are borrowed from the interval analysis
literature, for instance, [14,22], the accelerating devices introduced are new in the context of
computing polynomial ranges with the Bernstein approach. Similar ideas of cut-off test and
monotonicity test have also been used in [23] to find the global minima of a function. We then
develop a global optimization algorithm based on the Bernstein approach for efficient deter-
mination of the ranges and the optimizers of multivariate polynomials on general box-like
domains. Finally, we conduct numerical experiments to test and compare the performance
of the proposed algorithm with those of some other recent approaches, on several standard
polynomial problems of different dimensions.

123



J Glob Optim (2009) 45:403–426 405

The rest of the paper is organized as follows. In Sect. 2, we give the notations and
definitions of the Bernstein polynomials. In Sect. 3, we give the associated algorithms needed
for polynomial range finding using the Bernstein approach. Here we also give a detailed
description of each of the proposed accelerating device. In Sect. 4, we present the proposed
algorithm for polynomial range finding based on the Bernstein approach using these asso-
ciated algorithms. In Sect. 5, we first numerically test and compare the performance of the
proposed algorithm with that of the interval global optimization package GlobSol [18], and
then discuss and compare the qualitative features using their numerical results for three other
classes of global optimization techniques vis-a-vis those of the proposed algorithm. In Sect. 6,
we give the conclusions of the present work.

2 Bernstein form

Following the notations in [7], let l ∈ N be the number of variables and x = (x1,x2, . . . , xl) ∈
R

l . Define a multi-power x as x I = (xi1
1 , xi2

2 , . . . , xil
l ) and a multi-index of maximum

degrees N as N = (n1, n2, . . . , nl) and associate the index Nr,−k = (n1, . . . , nr−1, nr −
k, nr+1, . . . , nl), where 0 ≤ nr−k ≤ nr . Further, define a multi-index I as I = (i1,i2, . . . , il)
∈ N

l and associate the index Ir,k given by Ir,k = (i1, . . . , ir−1, ir + k, ir+1, . . . , il), where
0 ≤ ir + k ≤ nr . Inequalities I ≤ N for multi-indices are meant component-wise, where
0 ≤ ik ≤ nk , k = 1, 2, . . . , l. Also, write

(N
I

)
for

(n1
i1

)
, . . . ,

(nl
il

)
.

Let x = [x, x], x ≥ x be a real interval, where x = inf x is the infimum, and x = sup x is
the supremum of the interval x. The width of the interval x is defined as wid x = x−x . For an
l-dimensional interval vector or box x = (x1, x2, . . . , xl), the width of x is wid x = (wid x1,
wid x2, . . . , wid xl ).

An l-variate polynomial p of degree N is written in the power form as

p(x) =
∑

I≤N

aI x I , aI ∈ R, x = (x1, x2, . . . , xl) ∈ R
l . (1)

We can expand the multivariate polynomial in (1) into Bernstein polynomials over an
l-dimensional box x = (x1, x2, . . . , xl). Without loss of generality, we consider the unit
box u = [0, 1]l , since any nonempty box x of R

l can be affinely mapped onto u.
The transformation of a polynomial from its power form (1) into its Bernstein form results

in

p(x) =
∑

I≤N

bI (u)BN ,I (x), x ∈ u. (2)

The coefficients bI (u) are called the Bernstein coefficients of p over u, and BN ,I (x) is called
the I th Bernstein polynomial of degree N defined as

BN ,I (x) = Bn1
i1

(x1)Bn2
i2

(x2) . . . Bnl
il

(xl)

where

B
n j
i j

(x j ) =
(

n j

i j

)
x

i j
j (1− x j )

n j−i j , i j = 0, . . . , n j , j = 1, . . . , l.
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Each set of coefficients (aI or bI ) in (1) and (2) can be computed from the other as [2]:

aI =
∑

J≤I

(−1)I−J
(

N
I

) (
I
J

)
bJ

bI (u) =
∑

J≤I

( I
J

)

(N
J

)aJ , I ≤ N . (3)

The Bernstein coefficients are collected in an array B(u) = (bI (u))I∈S , where S = {I : I ≤
N }. This array is called a Bernstein patch.

Let p(x) denote the range of polynomial p on x. Then, by the range enclosing property
of the Bernstein coefficients [5],

p(u) ⊆ [min B(u), max B(u)] (4)

The enclosure interval on the right is called the Bernstein range enclosure. We can also
formulate this property as the convex hull property [6] which states

conv {(x, p(x)) : x ∈ u} ⊆ conv {(I/N , bI (u)) : I ∈ S} (5)

where conv denotes the convex hull and (I/N , bI (u)) are the control points of p. Thus, the
convex hull property states that the graph of p over u is contained in the convex hull of the
control points.

Let S0 be a special subset of the index set S comprising those indices of the vertices of
the array B(u), i.e., let

S0 := {0, n1} × · · · × {0, nl}
Then, the lower (resp., upper) bound of the Bernstein range enclosure (4) is sharp if and
only if min bI (u)I∈S (resp., max bI (u)I∈S) is attained at a Bernstein coefficient bI (u) with
I ∈ S0. This condition is known as the vertex condition [5]. The vertex condition holds also
for any subbox d ⊆ u [21]. Further, the vertex condition is said to be met within a given
tolerance ε, if

min
S0

B(u)−min B(u) ≤ ε and max B(u)−max
S0

B(u) ≤ ε (6)

If we want to tighten the Bernstein range enclosure in (4) when the vertex property does
not hold, we subdivide the domain box x into smaller subboxes, and apply the Bernstein
expansion to the polynomial p in (1) on the resulting subboxes. By repeated subdivisions,
the Bernstein range enclosure of the given polynomial over a box can be sharpened until they
are accurate to the given tolerance.

Let d be a subbox of u. In the Bernstein form, the first partial derivative of the polynomial
p in (1) with respect to xr (1 ≤ r ≤ l) is given by [7]

p′r (x) = ∂p

∂xr
(x) = nr

∑

I≤Nr,−1

[
bIr,1(d)− bI (d)

]
BNr,−1,I (x), x ∈ d (7)

Thus, the Bernstein coefficients b′I of the first partial derivative of p with respect to xr can be
obtained simply by forming the differences of its successive Bernstein coefficients. Define

b′I (d) := nr
(
bIr,1(d)− bI (d)

)
(8)
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Then,

p′r (x) =
∑

I≤Nr,−1

b′I (d)BNr,−1,I (x), x ∈ d (9)

The array B ′r (d) is used to denote the Bernstein coefficients
(
b′I (d)

)
I≤Nr,−1

.
The second partial derivative of p with respect to xr is given by

∂
2

p

∂x2
r

(x) = nr (nr − 1)
∑

I≤Nr,−2

[
bIr,2(d)− 2bIr,1(d)+ bI (d)

]
BNr,−2,I (x), x ∈ d

= (nr − 1)
∑

I≤Nr,−2

[
b′Ir,1

(d)− b′I (d)
]

BNr,−2,I (x), x ∈ d (10)

Thus, the Bernstein coefficients b′′I of the second partial derivative of p with respect to xr

can be obtained simply by forming the differences of the successive Bernstein coefficients
of the derivative of the polynomial p. Define

b′′I (d) := (nr − 1)
(

b′Ir,1
(d)− b′I (d)

)
(11)

Then,

p′′r (x) =
∑

I≤Nr,−2

b′′I (d)BNr,−2,I (x), x ∈ d (12)

We use the array B ′′r (d) to denote the Bernstein coefficients
(
b′′I (d)

)
I≤Nr,−2

.

3 Associated algorithms for polynomial range finding

3.1 Bernstein coefficients computation

In the approach called the Matrix method for Bernstein coefficients computation [27], the
given polynomial coefficients (irrespective of the dimensionality), are always arranged in
the form of a matrix instead of a multidimensional array. The size of this matrix depends
on the number of variables of the polynomial, and the maximum power of each variable in
the polynomial. The computation of Bernstein coefficients then proceeds using only matrix
operations such as inverse, multiplication, transpose and reshape. Moreover, the transforma-
tion of the polynomial coefficients from a general box-like domain to unit box domain is an
inherent part of this method.

The algorithm for computing the Bernstein coefficients based on the Matrix method [27]
has many associated algorithms. To save space here, we describe only the call to the algo-
rithm, along with the inputs and the outputs. Further details of the algorithm are available in
[27].

Algorithm Bernstein_Matrix: B(u) = Bernstein_Matrix (N , l, x, A)
Inputs: Degree N of the polynomial p, number of variables l, domain box x with l com-

ponents, and coefficient matrix A whose elements are the polynomial coefficients aI .
Output: A patch B(u) of Bernstein coefficients of p. Note that B is output in the form of

a matrix.
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3.2 Subdivision direction selection [27]

Suppose we have a list L of items (d, B(d)), with the domain box d and the Bernstein
patch B(d). We define a solution box as a box for which the vertex condition is satisfied
within the specified tolerance ε [cf. (6)]. Let Lsol be a solution list comprising items hav-
ing solution boxes and their Bernstein patches. Then, we define the current range estimate
p̂ = [inf p̂, sup p̂] as the minimum and maximum of all the Bernstein patches in Lsol .

In order to select a direction for efficient subdivision, we first select the box having the
smallest (or the largest) Bernstein coefficient from the current list L of working boxes.

An algorithm for this box selection rule is as follows.
Algorithm Select_box: d∗ =Select_box (L, Lsol , p̂)
Inputs: Working list L, solution list Lsol , and current range estimate p̂.
Outputs: The box d∗ selected for subdivision.
BEGIN Algorithm

1. From the working list L, choose d1 and d2 as those boxes for which the minimum and
the maximum values of the Bernstein coefficients are attained, respectively.

2. If Lsol �= ∅ then

1. {Compute distances}
dist1 = inf p̂ −min B(d1)

dist2 = max B(d2)− sup p̂.
2. {Compare}

if dist1 > dist2 then d∗ ← d1, else d∗ ← d2.

else d∗ ← d1

3. {Return}
return d∗.
END Algorithm

Once we have selected the box d∗, we bisect it in every component direction and find
the hull of the Bernstein range enclosure over (both) the resulting subboxes. We then select
the direction of subdivision as the one that gives the tightest hull, i.e., which provides the
tightest Bernstein range enclosure over both the subboxes. This direction is also taken to be
the subdivision direction for all other boxes that are present in L. The philosophy behind the
proposed rule is that “the subdivision direction for the selected box of the current list L is
likely the suitable subdivision direction for all other boxes currently in L”.

Based on this rule, we can have an algorithm for selecting the direction of subdivision.
Algorithm Direction_selection_rule_R1: k= Direction_selection_rule_R1 (L, Lsol ,

p̂, l)
Inputs: Working list L, solution list Lsol , current range estimate p̂, number of variables l.
Outputs: The component direction k selected for subdivision.
BEGIN Algorithm

1. {Selection of box}
d∗ = Select_box (L, Lsol , p̂)

2. {Iterate to find the hull of Bernstein range enclosure in each component direction}
for r = 1 to l do

1. Bisect d∗ along coordinate direction r such that
d∗ =d∗A ∪ d∗B .
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2. Compute the Bernstein patches B(d∗A), B(d∗B).
3. Determine

d(r) : = − wid
[
min

{
min B(d∗A), min B(d∗B)

}
, max

{
max B(d∗A), max B(d∗B)

}]

3. {Find the subdivision direction}
k : = min

{
j : j ∈ {1, 2, . . . , l} and d( j)= maxl

r = 1 d(r)
}
.

4. {Return}
return k.

END Algorithm

3.3 Subdivision point selection [27]

After choosing a suitable subdivision direction, we next select an appropriate point for subdi-
vision. We propose to subdivide the box at a point close to where the partial derivative of the
polynomial becomes equal to zero. The location of this point is estimated using the Bernstein
form of the derivative polynomial. If there are many such points, we choose the one where
the second partial derivative is maximum. By doing so, we expect the polynomial to thereby
become monotonic (in this direction), at least over one of the resulting subboxes. This may
lead to satisfaction of the vertex condition on the subbox within the given tolerance. If this
turns out to be the case, then the box need not be further subdivided.

Based on this idea we have an algorithm for selecting the subdivision point.
Algorithm Subdivision_point_selection: λr = Subdivision_point_selection (B(d), r,

Nr )
Inputs: Bernstein coefficients B(d) of the box d to be subdivided, the selected subdivision

direction r , and the multi-index of maximum degrees N of each variable of the polynomial
p.

Outputs: Subdivision point λr in the r th component direction.
BEGIN Algorithm

1. {Compute Bernstein coefficients b′I (d) of p′r (x)}
b′I (d)= nr

(
bIr,1(d)− bI (d)

)
.

2. {Compute differences of the successive Bernstein coefficients b′I (d) wherever the control
polygon of the derivative polynomial changes sign}
Set λr : = 0.5
for I = 0 to Nr,−1 do

1. if b′I (d)b′Ir,1
(d) < 0 then

1. Form set Sc.

Sc : =
{{(

I/(Nr,−1)

b′I (d)

)
,

(
Ir,1/(Nr,−1)

b′Ir,1
(d)

)}
: b′I (d)b′Ir,1

(d) < 0

}

2. {Check from Sc}

if
∣∣b′I (d)

∣∣ �=
∣∣∣b′Ir,1

(d)

∣∣∣ then compute b′′I (d)= (nr − 1)
(

b′Ir,1
(d)− b′I (d)

)

3. {From Sc find the location of maximum value of b′′I (d)}
Choose that element from Sc for which

∣∣b′′I (d)
∣∣ is maximum.
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4. {Use this element from Sc to compute the subdivision point λr in direction r}

λr =
I

Nr,−1
b′Ir,1

(d)− Ir,1
Nr,−1

b′I (d)

b′Ir,1
(d)− b′I (d)

, λr ∈ [0, 1]

5. {Return}
return λr .

END Algorithm.

3.4 Accelerating devices

To efficiently discard certain boxes where the global optimizers are sure not to lie, we use cer-
tain accelerating devices namely, the cut-off test, the simplified vertex test, the monotonicity
test and the concavity test.

3.4.1 The cut-off test

This test is introduced to eliminate certain boxes where the optimizers surely cannot lie,
thereby avoiding unnecessary subdivisions. If p̂ is the current range estimate, then we can
discard from L all those entries (d, B(d)) for which

inf p̂ ≤ min B(d) and max B(d) ≤ sup p̂,

since these entries do not lead to improvements in the current range estimate p̂.
An algorithm for performing the cut-off test is as follows:
Algorithm Cut_off_test: L= Cut_off_test (L, p̂)
Inputs: Current range estimate p̂, the list L.
Outputs: A pruned list L.
BEGIN Algorithm

1. {Execute for all boxes in the list L}
For each item (d, B(d)) in L, do the following: if inf p̂ ≤ min B(d) and sup p̂ ≥
max B(d) then discard the item (d, B(d)) from L.

2. {Return}
Output the pruned list L.

END Algorithm

3.4.2 The simplified vertex test

Sometimes, a patch B(d) does not give any improvement in the range enclosure even after
repeated subdivisions of d. A simplified vertex test is proposed to avoid such subdivisions.
Consider an item (d, B(d)) of the list L at a given iteration of the algorithm. Suppose that
the vertex condition within ε in (6) is satisfied only for min B(d) but not for max B(d), i.e.,
suppose

min
S0

B(d)−min B(d) ≤ ε but max B(d)−max
S0

B(d) > ε

In such cases, the item would normally continue to be processed in Algorithm Range, as
the vertex condition within ε is not fully satisfied for this item. However, further suppose
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that for this item we also have max B(d) ≤ sup p̂. Then, even if the item were to be further
processed, it would not lead to any improvement in updating the current range estimate p̂.
This is because, over the box d, the minimum of the range within ε has already been obtained
as min B(d), while the maximum of the range over this box (an upper bound of which is
max B(d)) would not lead to an increase in updating the sup p̂, as max B(d) ≤ sup p̂. There-
fore, the item can be removed from list L, and instead deposited in the solution list Lsol ,
where min B(d) would be later used for updating p̂.

A similar logic can be used for the situation where the vertex condition within ε is satisfied
for max B(d) but not for min B(d), and where we also have min B(d) ≥ inf p̂.

Based on this idea, we propose an algorithm for the simplified vertex test.
Algorithm Simplified_Vertex_test: [Lsol , L]= Simplified_Vertex_test ( p̂, L, Lsol , ε)
Inputs: Current range estimate p̂, the working list L, solution list Lsol , and the tolerance

ε to which the Bernstein range enclosure is to be found.
Outputs: An updated solution list Lsol and a pruned working list L.
BEGIN Algorithm

1. {Check for all items in the list}
Do for each item (d, B(d)) in L

1. {Check ‘vertex condition within ε’ for min B(d) and compare max B(d) with current
range estimate}
If min B(d) satisfies ‘vertex condition within ε’, and if max B(d) ≤ sup p̂, then delete
the item (d, B(d)) from L and deposit it in Lsol .

2. {Check ‘vertex condition within ε’ for max B(d) and compare min B(d) with current
range estimate}
If max B(d) satisfies ‘vertex condition within ε’, and if min B(d) ≥ inf p̂, then delete
the item (d, B(d)) from L and deposit it in Lsol .

2. {Return}
Return the updated solution list Lsol and the pruned working list L.

END Algorithm

3.4.3 The monotonicity test

Another device to avoid unnecessary subdivisions and accelerate the range finding algorithm,
is the one based on the monotonicity test for the Bernstein patches. The monotonicity test
checks whether p is strictly monotone in an entire subbox d ⊂ u, in which case the interior
of d cannot contain a global minimizer or maximizer. Therefore, if

0 /∈ p′r (d) for some r = 1, . . . , l

then p is strictly monotone over d with respect to the r th coordinate, and so the interior of
d cannot contain a global extremum point of p. The boundary of d can still contain a global
extremum point of p, if that part of boundary of d containing extremal polynomial value is
also part of the boundary of the original domain box u.

The Bernstein polynomials BNr,−1,I (x) in (9) are always non-negative on the interval they
are defined. So, if inf B ′r (d) > 0 resp. sup B ′r (d) < 0 then p is monotonically increasing
resp. decreasing with respect to direction r on the box d. In either case, the interior of d
cannot contain a global extremum point of p.
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If the boundary of d in any component direction, say r th direction, is also a part of the
boundary of u, then d cannot be discarded if p is monotonic in this direction. In such a case,
p can be converted into two l − 1 variate polynomials by ‘freezing’ the polynomial at its
endpoints in the r th direction. To evaluate the Bernstein coefficients of these two reduced
dimension polynomials, we can use the following lemma.

Lemma 1 [35] Let p be an l-variate polynomial and let B(d) be the patch of its Bernstein
coefficients on d. Then, the Bernstein coefficients of p on the m-dimensional faces of d are
just the coefficients on the respective m-dimensional faces of the patch B(d), 0 ≤ m ≤ l−1.

According to the above lemma, the Bernstein coefficients of the two (l − 1) dimensional
polynomials are given by the Bernstein coefficients (of the l-dimensional polynomial) at the
respective faces of d in the r th component direction.

Therefore, if p is monotonic with respect to some r th direction on the box d, and d has
no interval endpoints in common with the domain box u, then d can be discarded. But, if
d has an endpoint in common with u only in the r th component direction, then d can be
discarded only if p is monotonic in any of the remaining component directions, else d is
retained. Further, if p is monotonic in the r th component direction, there is no need to further
subdivide d in this direction, as it would not give any further improvements on the current
range estimate p̂. Instead, p can be converted to two polynomials of lesser dimension and
the above lemma applies. In this way, some unnecessary subdivisions are avoided, leading
to the acceleration of the algorithm.

3.4.4 The concavity test

The concavity test (or rather the non-convexity test) checks whether the polynomial p is
not convex on a subbox d ⊂ u, in which case d cannot contain a global minimizer in its
interior [12]. Moreover, a global minimizer can only lie on the boundary of d if that part of
the boundary which contains the minimum polynomial value is also a part of the boundary
of u.

Consider the computation for the minimum of p. If the polynomial is convex in some
subbox d then its Hessian matrix H must be positive semidefinite. A necessary condition for
this is that all diagonal elements of the Hessian matrix are non-negative. Therefore, if

Hrr (d) < 0 for some r = 1, . . . , l

then p cannot be convex over d, so d cannot contain a minimizer and d can be deleted.
Analogous logic holds for computing the maximum of p.

In the Bernstein form, the diagonal elements of the Hessian are given by (12). Since the
Bernstein polynomials BNr,−2,I (x) in (12) are always positive, sup B ′′r (d) < 0⇒ Hrr (d) <

0, i.e., if all b′′I (d) in (12) are negative, then the minimizer of the polynomial cannot lie in d.
Similarly, the maximizer of the polynomial cannot lie in d, if all b′′I (d) in (12) are positive,
as inf B ′′r (d) > 0⇒ Hrr > 0.

We use these tests to discard those boxes lying in the interior of u, where the minimizer
and the maximizer are sure not to lie. If d cannot contain a minimizer, then we can discard it
only if we are sure it would not contain a maximizer. Therefore, we can discard d from L if,
for any r , sup B ′′r (d) < 0 and max B(d) ≤ sup p̂. Similarly, if d cannot contain a maximizer,
then we can discard it only if we are sure it would not contain a minimizer. Hence, we can
discard d from L if, for any r , inf B ′′r (d) > 0 and min B(d) ≥ inf p̂.
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4 The proposed algorithm Range_Matrix

In the proposed algorithm, the Bernstein coefficients are evaluated only once and stored as
a matrix instead of the conventional multidimensional array. All the processing in the algo-
rithm (like subdivision, checking vertex property) are carried out on matrices rather than
on multidimensional arrays. Polynomials of any dimension can be more easily handled by
this matrix method. The matrices are created from multidimensional arrays (as shown in
Fig. 1). The size of the matrix depends on the number of variables of the polynomial, and the
maximum power of each variable in the polynomial.

For example, consider a polynomial in three variables x1, x2, x3 in the power form on u

p(x)= 2+ 4x1 + 5x2
1 − x2 + 2x1x2 + x1x3 − x2x3 + 6x2

1 x2x3 + 2x2
3 − x1x2

3 + x2
1 x2x2

3

where, n1= 2, n2= 1 and n3= 2. The coefficients of this polynomial are input to the proposed
algorithm as a matrix A arranged as

A=
⎛

⎝
a000 a010 a001 a011 a002 a012

a100 a110 a101 a111 a102 a112

a200 a210 a201 a211 a202 a212

⎞

⎠ =
⎛

⎝
2 −1 0 −1 2 0
4 2 1 0 −1 0
5 0 0 6 0 1

⎞

⎠

Similarly, the Bernstein coefficients are computed and stored in the proposed algorithm
as a 3× 6 matrix (instead of a three-dimensional array).

We now describe the details of the proposed algorithm. We first compute the Bernstein
coefficients using Algorithm Bernstein_Matrix (see Sect. 3.1). We next initialize a list L
consisting of item (u, B(u)) with the domain box u and the Bernstein patch B(u). We also
initialize a solution list Lsol to the empty list. From the list L, we then pick each item (d, B(d)),
check for vertex condition satisfaction, and perform the simplified vertex test within the spec-
ified tolerance ε. The successful items are removed from L and deposited in the solution list
Lsol . The current range estimate p̂ is then updated as the interval spanned by the minimum
and maximum of all the Bernstein patches in Lsol . Subsequently, we perform the cut-off test,
the monotonicity test and the concavity test to delete irrelevant boxes in the list L which
would not contribute to updating the current range estimate p̂. For the pruned list L, we then
select the subdivision direction k for subdivision, based on the direction selection rule R1
(see Sect. 3.2). In the next step, we pick each item from L, delete its entry from L and find
the subdivision point λk using the subdivision point rule (see Sect. 3.3). Then, we subdivide
the box d into subboxes dA and dB and compute the Bernstein patches B(dA) and B(dB)

using the relations given in [7]. The Bernstein coefficients B(dB) on the neighboring subbox
dB are obtained as intermediate values of the computation of B(dA). We add the new items
(dA, B(dA)) and (dB , B(dB)) to the list L. We continue the entire process till L becomes

Fig. 1 Two-dimensional or matrix representation of a three-dimensional coefficient array, showing the vertices
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empty and there are no more boxes left to be processed. Finally, the desired range enclosure
is computed as the current range estimate p̂ and the algorithm terminates.

We next present the proposed algorithm for computing the ranges of multivariate polyno-
mials using the Bernstein polynomial approach.

Algorithm Range_Matrix: p̂= Range_Matrix (N , A, x, ε)
Inputs: Multi-index N of maximum degrees of each variable of the polynomial, coefficient

matrix A whose elements are the polynomial coefficients aI ∈ R, the initial box x ∈ IR
l ,

and the tolerance ε to which the Bernstein range enclosure is to be found.
Outputs: An enclosure p̂ of the range of the range of polynomial on x, computed to the

specified tolerance ε.
BEGIN algorithm

1. {Compute the Bernstein coefficients}
B(u)= Bernstein_Matrix (N , l, x, A)

2. {Initialize lists}
L← {(u, B(u))}, Lsol ← {}.

3. {Start iteration}
If L is empty go to step 12.

4. {Check for each box whether vertex condition is met within ε}
For each item (d, B(d)) in L, if (d, B(d)) satisfies vertex condition within ε as given by
(6), then enter the item in list Lsol and delete its entry from L.

5. {Compute current range estimate}
Compute p̂ as the interval spanned by the minimum and maximum of the second entries
of all the items present in Lsol (i.e., over all the Bernstein patches present in the Lsol ).

6. {Perform simplified vertex test}
[Lsol , L]= Simplified_vertex_test ( p̂, L, Lsol , ε).

7. {Perform cut off test}
L= Cut_off_test (L, p̂).

8. {Perform monotonicity test}
For each item in L, perform the monotonicity test to obtain a pruned list L.

9. {Perform concavity test}
For each item in L, perform the concavity test to obtain a pruned list L.

10. {Choose a component direction k for subdivision}
k= Direction_selection_rule_R1 (L, Lsol , p̂, l)

11. {For each box, find the subdivision point in kth direction and subdivide}
For i = 1 to length (L) do

a. pick the i th item (d, B(d)) from L and delete its entry from L
b. λk = Subdivision_point_selection (B(d), k, N )
c. Subdivide d at λk in component direction k. This generates two subboxes dA and dB

such that d= dA ∪ dB .
d. Compute B(dA) and B(dB) (cf. [7]). Enter these new items (dA, B(dA)) and (dB ,

B(dB)) at the end of list L.

Go to step 3.
12. {Return}

Return the current range estimate p̂ as the desired range enclosure of the polynomial p
on x.

END Algorithm
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5 Comparison with some existing optimization methods

In this section, we compare and discuss the capabilities of the proposed Bernstein polynomial
approach with those of some other approaches such as interval global optimization, filled
function, combinatorial topology and the hybrid approach. We begin by comparing with the
interval global optimization approach.

5.1 Comparison with interval global optimization

Among the most reliable deterministic global optimization methods are interval branch and
bound techniques [14,18,22,26]. GlobSol [18] is a well-known self-contained interval global
optimization package based on FORTRAN 90 for the solution of constrained and uncon-
strained global optimization problems with rigor. The special features of GlobSol are that
it is based on interval branch-and-bound methods, and combines powerful tools such as
automatic differentiation, constraint propagation, and specialized interval techniques such as
the Interval Newton method [22]. Constraint propagation and the Interval Newton method
are used to narrow down the width of the domain box, and an effective point method is
used to find approximate feasible points. Also incorporated are a special augmented sys-
tem mode for least squares problems and an overestimation-reducing “peeling” process for
bound-constraints.

GlobSol compiles and runs the user-provided FORTRAN 90 code to produce an internal
representation or code list for the objective function, the constraints, and their gradients. The
optimization code interprets the derivative code list at run time to perform floating point and
interval evaluations of the objective function, gradient, and the Hessian matrix. A separate
data file is defined where the user supplies the initial search limits whose coordinates are
considered as the bound constraints, along with an initial guess for a global optimizer, if
available. The GlobSol configuration file is used to control printing, set tolerances, and select
the various algorithm components, such as the choice of preconditioner, choice of the Interval
Newton method, form of problem, etc. Performance statistics, both in a report form and as
inputs to spreadsheets, are available as outputs of the package.

We test and compare the performances of GlobSol with that of the proposed Algorithm
Range_Matrix on 18 polynomial problems, by computing their range enclosures on given
domains, to the specified tolerance ε. These 18 problems are taken from [31] and are described
in Appendix A. All the code is developed in Forte FORTRAN 95 [30], and all computations
are performed on a Sun 440 MHz Ultra Sparc 10 Workstation with 2 GB RAM. All rounding
errors are accounted for by using interval arithmetic support provided in the compiler. All
the numerical results are obtained with ε= 10−15 for problems of dimension lesser than 6,
and with ε= 10−10 for problems of higher dimensions. For computational purposes, we set
a specified time limit of 5 h.

Table 1 reports the range enclosures obtained for the 18 problems with the proposed algo-
rithm and GlobSol, along with their abbreviated names and dimensions. In all the problems,
the proposed algorithm gives more accurate results than GlobSol. However, in one of the
problems, GlobSol was unable to compute the range in the time limit of 5 h as indicated by
a ‘∗’ in this table.

For comparing both the methods, we choose the performance metrics as computation time
(in seconds) and the total number of boxes processed. For these metrics, we give the values
of ratio as
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Table 1 Polynomial range enclosures obtained with the proposed algorithm, and GlobSol

Ex Test function Dim Range obtained with

Range_Matrix GlobSol

1 L.V. 3 3 [−9.3500000000,14.8000000000] [−9.3499999999,14.7999999999]

2 R.D. 3 3 [−36.7126906800,10.4056040300] [−36.7126906799,10.4056040300]

3 L.V. 4 4 [−20.8000000000,22.8000000000] [−20.7999999999,22.7999999999]

4 Cap 4 4 [−3.1800966258,4.4852773332] [−3.1800966258,4.4852773332]

5 Wrig 5 5 [−30.25,40.0] [−30.2499999999,40.0]

6 Reim 5 5 [−5.0,5.0] [−4.9999999999,4.9999999999]

7 Hun 5 5 [−1436.515078155,161.120543283] [−1436.5150781550,−161.1205432831]

8 Cyc 5 5 [−30000.0,50000.0] [−30000.0,∗]
9 Mag 6 6 [−0.25,280.0] [−0.2499999999,279.9999999999]

10 C. D. 6 6 [−270397.4000000,270202.600000] [−270397.399999999,270202.599999999]

11 But 6 6 [−1.4393333333,0.2190000000] [−1.4393333333,0.2189999999]

12 Hair 6 6 [−1875.25,−48.25] [−1875.2499999999,−48.2500000000]

13 Reim 6 6 [−937501.0000000,937499.000000] [−937500.999999997,937498.999999997]

14 Mag 7 7 [−0.25,330.0] [−0.2499999999,329.9999999999]

15 Cyc 7 7 [−5.0,7.0] [−4.9999999999,6.9999999999]

16 Heart 8 8 [−1.3677500000,1.74345327935] [−1.3677546999,1.7434485793]

17 Viras 8 8 [−29.0,21.0] [−28.9999999999,20.9999999999]

18 Cyc 8 8 [−8.0,8.0] [−7.9999999999,7.9999999999]

Performance metric with basic algorithm

Performance metric with proposed algorithm
(13)

and the percent reduction computed as

= Performance metric with basic− Performance metric with proposed algorithm

Performance metric with basic algorithm
× 100

(14)

where the basic algorithm is taken as GlobSol and the proposed algorithm is Algorithm
Range_Matrix.

In Table 2, we report the computational times taken by GlobSol and Range_Matrix, respec-
tively in columns 4 and 6. In column 8 of the table we give the ratio of the computational
times taken by GlobSol to that of Range_Matrix, whereas in column 10 we give the percent
reduction in the computation time of Range_Matrix over that of GlobSol. In the same table,
in columns 5 and 7, respectively, we report the number of boxes processed by GlobSol and
the proposed algorithm. In columns 9 and 11, we give the ratio and the percent reduction in
the number of boxes processed by GlobSol with that of the proposed method Range_Matrix.
In the table, ‘∗’ entries indicate that the range could not be computed within the time limit,
and ‘−’ entries indicate that no further analysis could be done as a consequence of this.

From Table 2, we observe that concerning the computational time, the proposed algorithm
gives reduction in 17 problems, whereas GlobSol gives a reduction in only one problem.
Wherever there are improvements, the ratio varies from 1.609 to 239560 and the average
ratio is as high as 28282. Similarly, the percent reduction varies from 37.86% to 100% in the
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Table 2 Comparison of computational times (in seconds) taken and number of boxes processed by Globsol
and by the proposed algorithm

Ex Test function Dim GlobSol Range_Matrix Ratio Percent reduction

Time Boxes Time Boxes Time Boxes Time Boxes

1 L. V. 3 3 0.0500 16 0.0030 3 16.667 5.33 94.00 81.25

2 R. D. 3 3 0.0100 3 0.0027 3 3.704 1.00 73.00 0.00

3 L. V. 4 4 0.3500 108 0.0056 3 62.500 36.00 98.40 97.22

4 Cap 4 4 0.3700 78 0.0680 201 5.441 0.39 81.62 −157.69

5 Wrig 5 5 0.0100 3 0.0032 3 3.125 1.00 68.00 0.00

6 Reim 5 5 7.8300 1844 4.7706 63 1.641 29.27 39.07 96.58

7 Hun 5 5 2.0300 135 2.1078 75 0.963 1.80 −3.83 44.44

8 Cyc 5 5 ∗ ∗ 0.0010 1 – – − −
9 Mag 6 6 2.1700 498 0.3910 127 5.550 3.92 81.98 74.50

10 C. D. 6 6 2.2400 90 0.0009 1 2392.1 90 99.96 98.89

11 But 6 6 1.1300 125 0.0129 7 87.597 17.86 98.86 94.40

12 Hair 6 6 0.0200 2 0.0020 1 10.249 2 90.24 50.00

13 Reim 6 6 1.2700 128 0.7175 1 1.770 128 43.50 99.22

14 Mag 7 7 5.0500 1459 3.1380 255 1.609 5.72 37.86 82.52

15 Cyc 7 7 108.750 17686 0.0010 1 101160 17686 100.00 99.99

16 Heart 8 8 12.350 438 0.7337 27 16.83 16.22 94.06 93.84

17 Viras 8 8 222.760 21548 0.0016 1 137470 21548 100.00 100.00

18 Cyc 8 8 386.600 40000 0.0016 1 239560 40000 100.00 100.00

17 problems. The average percent reduction (over all the problems) in computational time
with the proposed algorithm is 76.28%.

We also observe that concerning the total number of boxes processed, the proposed algo-
rithm gives reduction in 17 problems, whereas GlobSol gives reduction in only one problem.
Where there is an improvement, the ratio varies from 1.00 to 40000 and the average ratio
is as high as 4680.74. Similarly, the percent reduction varies from 0% to 100% in the 17
problems. The average percent reduction (over all the problems) in the number of boxes with
the proposed algorithm is 62.07%.

Thus, we can conclude that the proposed algorithm is overall considerably more efficient
than GlobSol in computing the ranges of these 18 polynomial problems.

5.2 Comparison with other approaches

In this subsection, we slightly modify the proposed algorithm Range_Matrix described in the
previous section, to find only the global minimum value for polynomial programming prob-
lems on a closed bounded domain, and as a by-product identify the global minimum points.
Using the computational results for seven standard test problems taken from the available
global optimization literature and described in Appendix B, we bring forth the qualitative fea-
tures of the proposed approach as compared to the approaches of Zhang et al. [36], Vrahatis
et al. [33] and Salhi and Queen [28].

We first give a brief outline of the latter approaches, referring to the respective algorithms
as ZNLT, VST and SQ. We then discuss and compare the features and capabilities of these
methods on some test problems.
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5.2.1 The filled function approach

A popular global optimization approach called the filled function approach is based on the
sequential improvement of local optima [16,25]. This approach uses gradient-type methods
coupled with certain auxiliary functions to move from one local minimizer to another bet-
ter one. The filled function approach finds global minima of multidimensional non-convex
functions. The idea behind the approach is to construct a ‘filled function’ P(x) to move away
from the current local minimizer x∗1 of the original objective function f (x), and find a better
minimizer x∗2 of f (x) such that f (x∗2 ) < f (x∗1 ), or to determine that the current local mini-
mizer x∗1 is already a global minimizer of f (x). Ge and Qin [10,11] define a filled function
of f (x) at a local minimizer x∗1 of f (x) as a function P(x) that (1) has the maximizer as x∗1 ;
(2) has no minimizer or saddle point present in any higher basin of f (x); (3) has a minimizer
present along the direction x − x∗1 .

Zhang et al. [36] propose a new two-parameter (ρ and µ) filled function at a local mini-
mizer x∗1 , for minimizing the objective function f (x). First, a local minimization function is
used to find the local minimizers of the objective function. Then, starting at an initial point in
the neighborhood of the current local minimizer, the proposed filled function is minimized
along the search directions in order to reach a point such that the function value is smaller
than the value at the previous local minimizer. Then, this point is used as an initial point in a
local search to find a next better local minimizer. The parameters ρ and µ are selected small
enough to locate the next better minimizer, else their values are reduced successively. The
algorithm is repeated in a two-phase iterative fashion until a global solution is identified (no
better local solution can be found). The algorithm, referred to as Algorithm ZNLT below
gives a much improved performance in finding a global minimum solution.

Algorithm ZNLT is examined by Zhang et al. on two problems namely Goldstein and
Price and Six hump camel functions listed in Appendix B. Apart from the search domain, the
inputs required are the values of the parameters ρ and µ needed to build the filled function, a
set of m initial points to start the search and minimize the filled function, and the tolerance ε.

From a study of Algorithm ZNLT and the results, we observe that the success of the
algorithm depends upon choice of the initial points and a successful initial point would iden-
tify only one global minima. Selection of parameters ρ and µ also affect the success rate
of locating another better local minima. Nevertheless, the success rate can be increased by
increasing the density of initial points. Unfortunately, the growth in number of initial points
is exponential with respect to the dimension to the problem. Moreover, the function value
has to be evaluated at every new minimizer and compared with that of the previous one. In
this way, the computational burden of Algorithm ZNLT could become very high.

In contrast, the proposed Algorithm Range_Matrix does not need any initial point to start
with, no other local minimization function is used to locate the minimizers, and no function
evaluations are required. The proposed algorithm could also quite easily and successfully
extract all the global minimizers in both these problems.

5.2.2 The combinatorial topology approach

Several global optimization techniques consist of a local and a global component. The local
component is usually a traditional gradient descent local optimization technique, while the
global component is used to search globally the search space, in a complete and exhaustive
fashion. In many applications, there are imprecise values for the input data as well as for the
function values. Information about the function is obtained in the form of an approximation
to the true function value, contaminated by a small amount of noise.
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Vrahatis et al. [32,33] propose an algorithm applicable to problems with imprecise func-
tion and gradient values. The algorithm makes use of the interval Newton method to roughly
isolate the stationary points of the function. A characterization criterion is based upon the
gradient values of the function is used, in order to characterize the isolated stationary points
as minima, maxima, or saddle points. The characterization criterion implements topological
degree theory. The localized minima are computed by applying a real-valued generalized
bisection method (which requires only the signs of the gradient values to be correct). This
bisection method is a global convergent method and can be applied to a box of arbitrary size
that includes a stationary point. The algorithm chooses those points characterized as minima
and computes all of them within a given accuracy to obtain the global minimum.

We refer to this algorithm as Algorithm VST. Algorithm VST has been examined by
Vrahatis et al. on three problems namely, Himmelblau, Extended Kearfott and Quadratic
functions listed in Appendix B.

We note that the success of Algorithm VST depends upon the isolation of all the station-
ary points, which could be very large. To isolate a stationary point, many interval function
calls may have to be made. Further, to characterize, localize, and compute the minima, too
many real function evaluations may have to be performed including some redundant function
evaluations.

Algorithm Range_Matrix found successfully the results for these three problems, too.
In comparison, Algorithm Range_Matrix does not need to look for the stationary points as
these are generated during the computation of the minimum of the polynomial. Moreover,
no function evaluations are required.

5.2.3 The hybrid approach

Salhi and Queen [28] investigated the problem of optimizing possibly non-differentiable
functions having several minima. They propose a hybrid approach that combines simulated
annealing (SA), tabu search (TS), and a descent method based on a Simplex method. SA
and TS are heuristic methods that examine the potential moves from a single starting solu-
tion. While SA is used to find the good regions where local minima might exist, the descent
method speedily moves the current solution to its local minima, and TS prevents returning
to previously visited solutions (which can be local minima already found). When deciding
the next move, the descent method relies only on the function values at the vertices of the
simplex rather than on the curvature of the function. Hence, the method may fail if a local
minimum happens to be in a small region surrounded by areas where the function has values
smaller than at the current local minimum. So, these regions are made tabu, i.e., restrict those
moves that belong to regions that have already been investigated. Tabu regions are defined as
balls, whose radii can vary dynamically and whose centers may be either the local minimum
found or the solution obtained by the SA which led to such a local minimum. This technique
not only produces the first global minimum, but also detects other global minima along with
those local minima which are nearly as good as the global ones.

We refer to this algorithm as Algorithm SQ. Algorithm SQ is been examined by Salhi and
Queen on five problems namely, Goldstein and Price function, Rosenbrock functions (2 and
4 variables) and Zakharov functions (2 and 5 variables) listed in Appendix B. To obtain some
statistical results, the authors carry out 10 independent trials for each function. Each trial
corresponds to a new starting point of the method, which is chosen randomly. The frequency
of occurrence of the best local minima may not be always 100%. Thus, there is no guarantee
that the global minimum is always found.
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Algorithm Range_Matrix also found the results of these five problems successfully. The
advantages that Algorithm Range_Matrix has are that no initial points are needed, and no
functions evaluations are required. Moreover, the proposed algorithm is guaranteed to find
the global minimum, and all the minimizers are extracted with no extra work.

6 Conclusions

We proposed an algorithm for polynomial range finding based on the Bernstein polynomial
approach. Our algorithm incorporates many new features, such as, the generalized matrix
method for Bernstein coefficient computation, a new subdivision direction selection rule, a
new subdivision point selection rule, and four accelerating devices. We compared the effi-
ciency of the proposed algorithm with that of interval global optimization on 18 polynomial
problems, on the basis of the computation time and the number of boxes processed. We found
the proposed algorithm to be more efficient in all performance metrics. We also illustrated
qualitatively the superior features of the proposed algorithm over those of three other opti-
mization techniques: the filled function method, a global optimization method for imprecise
problems, and a hybrid approach combining simulated annealing, tabu search and a descent
method.

Acknowledgements The authors thank Professor Jürgen Garloff of University of Applied Sciences in Con-
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Appendix A

Description of test problems

In the following, we list the polynomials p, the domain boxes x, the abbreviated and full
names, and the dimensionality of the problems used in our tests. The problems are arranged
in the order of increasing dimensionality. All these test problems are from Verschelde’s PHC
pack [31].

1 L. V. 3: A neural network modeled by an adaptive Lotka-Volterra system, l = 3

p(x1, x2, x3) = x1x2
2 + x1x2

3 − 1.1x1 + 1

xi = [−1.5, 2], i = 1, 2, 3

2 R. D. 3: A 3-dimensional reaction diffusion problem, l = 3

p(x1, x2, x3) = x1 − 2x2 + x3 + .835634534x2(1− x2)

xi = [−5, 5], i = 1, 2, 3

3 L. V. 4: A neural network modeled by an adaptive Lotka-Volterra system, l = 4

p(x1, x2, x3, x4) = x1x2
2 + x1x2

3 + x1x2
4 − 1.1x1 + 1

xi = [−2, 2], i = 1, . . . , 4
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4 Cap 4: Caprasse’s system: l = 4

p(x1, x2, x3, x4) = −x1x3
3 + 4x2x2

3 x4 + 4x1x3x2
4 + 2x2x3

4

+ 4x1x3 + 4x2
3 − 10x2x4 − 10x2

4 + 2

xi = [−.5, .5], i = 1, . . . , 4

5 Wrig 5: System of A. H. Wright, l = 5

p(x1, x2, x3, x4, x5) = x2
5 + x1 + x2 + x3 + x4 − x5 − 10

xi = [−5, 5], i = 1, . . . , 5

6 Reim 5: The 5-dimensional system of Reimer, l = 5

p(x1, x2, x3, x4, x5) = −1+ 2x6
1 − 2x6

2 + 2x6
3 − 2x6

4 + 2x6
5

xi = [−1, 1], i = 1, . . . , 5

7 Hun 5: The 5-dimensional Hunecke, l = 5

p(x1, x2, x3, x4, x5) = x6
2 x3 + x2x6

3 + x2
1 x4

2 x5 − 3x1x2
2 x2

3 x4x5 + x4
3 x2

4 x5

− x3
1 x3x4x2

5 − x1x2x3
4 x2

5 + x2x3x5
5

x1 = [0, 1], x2= [2, 3], x3=[−2,−1], x4=[1, 3], x5= [−2,−1]
8 Cyc 5: The cyclic 5-roots problem, l = 5

p(x1, x2, x3, x4, x5) = x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x2x3x4x5

xi = [−10, 10], i = 1, . . . , 5

9 Mag 6: A problem of magnetism in physics, l = 6

p(x1, x2, x3, x4, x5, x6) = 2x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5 + x2

6 − x6

xi = [−5, 5], i = 1, . . . , 6

10 C. D. 6: Camera displacement between two positions, scaled first frame, l = 6

p(x1, x2, x3, x4, x5, x6) = −6.8x1x4 − 3.2x1x5 + 1.3x1x6 + 5.1x1 − 3.2x3x4

− 4.8x2x5 − 0.7x2x6 − 7.1x2 + 1.3x3x4 − 0.7x3x5

+ 9.0x3x6 − x3 + 5.1x4 − 7.1x5 − x6 + 2.6

xi = [−100, 100], i = 1, . . . , 6

11 But 6: Butcher’s problem, l = 6

p(x1, x2, x3, x4, x5, x6) = x6x2
2 + x5x2

3 − x1x2
4 + x3

4 + x2
4 − 1/3x1 + 4/3x4

x1 = [−1, 0], x2=[−.1, .9], x3=[−.1, .5], x4=[−1,−.1],
x5 = [−.1,−.05], x6=[−.1,−.03]

12 Hair 6: Hairer, l = 6

p(x1, x2, x3, x4, x5, x6) = x3
3 x4 + x3

2 x5 + x3
1 x6 − .25

xi = [2, 5], i = 1, 2, 3, xi = [−5,−2], i = 4, 5, 6

13 Reim 6: The 6-dimensional system of Reimer, l = 6

p(x1, x2, x3, x4, x5, x6) = −1+ 2x7
1 − 2x7

2 + 2x7
3 − 2x7

4 + 2x7
5 − 2x7

6

xi = [−5, 5], i = 1, . . . , 6
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14 Mag 7: Katsura 6, a problem of magnetism in physics, l = 7

p(x1, x2, x3, x4, x5, x6, x7) = x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5 + 2x2

6 + 2x2
7 − x1

xi = i = 1, . . . , 7

15 Cyc 7: The cyclic 7-roots problem, l = 7

p(x1, x2, x3, x4, x5, x6, x7) = x1x2x3x4x5x6 + x2x3x4x5x6x7 + x1x3x4x5x6x7

+ x1x2x4x5x6x7 + x1x2x3x5x6x7 + x1x2x3x4x6x7

+ x1x2x3x4x5x7

xi = [−1, 1], i = 1, . . . , 7

16 Heart 8: Heart-dipole problem, l = 8

p(x1, x2, x3, x4, x5, x6, x7, x8) = x1x3
6 − 3x1x6x2

7 + x3x3
7 − 3x3x7x2

6 + x2x3
5

− 3x2x5x2
8 + x4x3

8 − 3x4x8x2
5 + 0.9563453

x1=[−.1, .4], x2= [.4, 1], x3=[−.7,−.4], x4= [−.7, .4], x5=[.1, .2],
x6=[−.1, .2], x7=[−.3, 1.1], x8=[−1.1,−.3]

17 Viras 8: the construction of Virasoro algebras, l = 8

p(x1, x2, x3, x4, x5, x6, x7, x8) = −2x1x4 + 2x1x7 − 2x2x5 + 2x2x7 − 2x3x6 + 2x3x7

+ 2x4x7 + 2x5x7 + 8x6x7 − 6x6x8 + 8x2
7

+ 6x7x8 − x7

xi = [−1, 1], i = 1, . . . , 8

18 Cyc 8 : The cyclic 8-roots problem, l = 8

p(x1, x2, x3, x4, x5, x6, x7, x8) = x1x2x3x4x5x6x7 + x2x3x4x5x6x7x8 + x1x3x4x5x6x7x8

+ x1x2x4x5x6x7x8 + x1x2x3x5x6x7x8

+ x1x2x3x4x6x7x8 + x1x2x3x4x5x7x8

+ x1x2x3x4x5x6x8

xi = [−1, 1], i = 1, . . . , 8

Appendix B

Additional test problems

In this appendix, we describe the additional polynomial test problems considered in Sect. 5.2.

• Problem 1: Goldstein price (2 variables) [36]

p(x)= g(x)h(x)

where,

g(x) = 1+ (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2 )

h(x) = 30+ (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2 )
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The initial search box is

x1=[−2, 2], x2= [−2, 2]
Global minimum of the function is

f (x∗)= 3.0

and the global minimizer is

x∗ = (0,−1)

• Problem 2: Six hump back camel function (2 variables) [36]

p(x)= 4x2
1 − 2.1x4

1 +
1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2

The initial search box is

x1= [−3, 3], x2= [−3, 3]
Global minimum of the function is

f (x∗)= − 1.031628453489616

and the global minimizers are

x∗1 = (0.089842005044578136,−0.71265634021124658)

x∗2 = (−0.089842005045197792, 0.71265634021270497)

• Problem 3: Himmelblau function (2 variables) [33]

p(x)= (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2

The initial search box is

x1= [−5, 5], x2=[−5, 5]
Global minimum of the function is

f (x∗)= 0.0

and the global minimizers are

x∗1 = (−2.8044215066473197, 3.131309722462987)

x∗2 = (−3.779310248573142,−3.283185853881085)

x∗3 = (3.584428342000785,−1.8481265521645198)

x∗4 = (3.0, 2.0)

• Problem 4: Extended Kearfott function (n variables) [33]

p(x)=
n−1∑

i = 1

(x2
i − xi+1)

2 + (x2
n − x1)

2

The initial search box is

x=[−2, 2]n
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For n= 4, the global minimum of the function is

f (x∗)= 0.0

and the global minimizers are

x∗1 = (0.0, 0.0, 0.0, 0.0)

x∗2 = (1.0, 1.0, 1.0, 1.0)

• Problem 5: Quadratic function (n variables) [33]

p(x)= x2
1 + x2

2 + · · · + x2
n − r

The initial search box is

x=[−99.99, 100]n

For n= 8 and r = − 2, the global minimum of the function is

f (x∗)= − 2.0

and the global minimizer is

x∗ = (0, 0, 0, 0, 0, 0, 0, 0)

• Problem 6: Rosenbrock function (n variables) [28]

p(x)=
n−1∑

i = 1

[
100(xi − xi+1)

2 + (xi − 1)2]

The initial search box is

x= [−5, 10]n

For n= 2, the global minimum of the function is

f (x∗)= 0.0

and the global minimizer is

x∗ = (1.0, 1.0)

For n= 4, the global minimum of the function is

f (x∗)= 0.0

and the global minimizer is

x∗ = (1.0, 1.0.1.0, 1.0)

• Problem 7: Zakharov function (n variables) [28]

p(x)=
(

n∑

i = 1

x2
i

)

+
(

n∑

i = 1

0.5i xi

)2

+
(

n∑

i = 1

0.5i xi

)4

The initial search box is

x= [−5, 10]n
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For n= 2, the global minimum of the function is

f (x∗)= 0.0

and the global minimizer is

x∗ = (0, 0)

For n= 5, the global minimum of the function is

f (x∗)= 0.0

and the global minimizer is

x∗ = (0, 0, 0, 0, 0)
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